报告题目:Concentration prediction and load estimation
报 告 人:王友乾教授 澳大利亚昆士兰大学应用统计数学首席教授
报告时间:2014年8月20日上午 10:00
报告地点:水电馆401室
主办单位:水利水电学院
摘要:
Load estimation is not a trivial task due to the complex behaviour of constituents in natural streams, the variability of water flows and often a limited number of data points. Regression is commonly used for load estimation and provides a fundamental tool for trend estimation by standardising the other time specific covariates such as flow. In this talk I will introduce how to improve load estimation and enhance power for trend detection.by proposing a new regression model that includes an innovative compounding errors model structure and using two additional predictive variables (average discounted flow and turbidity). By combining this modelling approach with a new regularly optimised sampling strategy, which adds uniformity to the event sampling strategy, the predictive power was increased to 90%. Using the enhanced regression model proposed here, it was possible to detect a trend of 20% over 20 years, which is in stark contrast to previous conclusions presented in the literature.
报告人介绍:
王友乾教授先后在浙江大学(1986)和北京大学(1988)获得理学学士和硕士学位,1991年在英国牛津大学获得统计学博士学位,历任美国哈佛大学副教授、新加坡国立大学副教授、澳大利亚联邦科学院研究员、首席科学家。2010年起任澳大利亚昆士兰大学应用统计数学首席教授、数学与物理学院应用数学中心主任。王友乾教授长期从事数理统计学方面的研究,特别是环境工程和自然资源管理领域统计模型及数据分析技术开发,研究领域包括统计方法在海洋生物学、流行病理学和环境工程学中的应用。王友乾教授在国际学术期刊上发表科技论文200余篇,论文引用超过2000余次。现任Biometrics期刊编委、The Electronic Journal of Statistics杂志副主编。